Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Braz J Microbiol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662152

ABSTRACT

In South Africa, basic healthcare centres treat sexually transmitted infections (STIs) using a syndromic approach. In line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, a complete study of all randomised controlled trials and surveillance data relevant to N. gonorrhoeae antibiotic resistance was conducted. To discover papers published between 2002 and 2022, searches were undertaken using PubMed, EMBASE and any other relevant databases. This systematic review extracted a total of 463 articles published between 2002 and 2022 from a variety of online research sources. Seven South African provinces were represented in the studies that were assessed. Mpumalanga and the North West Province did not have any studies that described the identification and monitoring of antimicrobial resistance (AMR). This study presents data obtained from a comprehensive analysis of 2140 isolates, in which we examined the presence of one or more antibiotic resistance. Our findings revealed that out of these samples, 1891 isolates exhibited antimicrobial properties; tetracycline was the antimicrobial resistance that was found the most often (30%), followed by ciprofloxacin (19%) and penicillin (17%). The mean of the isolates was 143, the upper 95% mean was 243, and the standard deviation (SD) was 181.6. All microbiological identification and susceptibility testing processes must be standardised and improved so national organisations can monitor AMR. The nation's health community must address all identified areas of concern to avoid AMR.

2.
Article in English | MEDLINE | ID: mdl-38252299

ABSTRACT

Plasmodium falciparum is the most lethal malaria parasite. Increasing incidences of drug resistance of P. falciparum have prompted the need for discovering new and effective antimalarial compounds with an alternative mode of action. Heat shock protein 90 (PfHsp90) facilitates protein folding and is a promising antimalarial drug target. We have previously reported that iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA) exhibit antimalarial activity. We investigated the abilities of IMA and UAA to bind PfHsp90 by molecular docking and dynamics simulations. The in silico predictions were validated by biochemical assays conducted on recombinant PfHsp90. The interaction between the ligands and PfHsp90 was evaluated using ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR), and surface plasmon resonance (SPR) analysis. The results obtained by docking calculations and MD dynamics simulation predicted that UAA and IMA preferentially bound to PfHsp90 via the N-terminal domain, with UAA binding more stable than IMA. UV-vis-based data suggest that PfHsp90 harbors buried aromatic amino acids, which were exposed in the presence of either IMA or UAA. In addition, data obtained using FTIR suggested that IMA and UAA destabilized the secondary structure of PfHsp90. Of the two compounds, UAA bound to PfHsp90 within the micromolar range based on surface plasmon resonance (SPR)-based binding assay. Furthermore, both compounds disrupted the holdase chaperone function of PfHsp90 as the chaperone failed to suppress heat-induced aggregation of the model proteins, malate dehydrogenase (MDH), luciferase, and citrate synthase in vitro. In addition, both compounds lowered the ATPase activity of PfHsp90. The molecular dynamics simulation analysis indicated that the docked complexes were mostly stable for 100 ns, validating the data obtained through the biochemical assays. Altogether, this study expands the repository of antiplasmodial compounds that have PfHsp90 among their possible targets.

3.
Microorganisms ; 11(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894198

ABSTRACT

The emergence of multidrug-resistant pathogens creates public health challenges, prompting a continuous search for effective novel antimicrobials. This study aimed to isolate marine actinomycetes from South Africa, evaluate their in vitro antimicrobial activity against Listeria monocytogenes and Shiga toxin-producing Escherichia coli, and characterize their mechanisms of action. Marine actinomycetes were isolated and identified by 16S rRNA sequencing. Gas chromatography-mass spectrometry (GC-MS) was used to identify the chemical constituents of bioactive actinomycetes' secondary metabolites. Antibacterial activity of the secondary metabolites was assessed by the broth microdilution method, and their mode of actions were predicted using computational docking. While five strains showed antibacterial activity during primary screening, only Nocardiopsis dassonvillei strain SOD(B)ST2SA2 exhibited activity during secondary screening for antibacterial activity. GC-MS identified five major bioactive compounds: 1-octadecene, diethyl phthalate, pentadecanoic acid, 6-octadecenoic acid, and trifluoroacetoxy hexadecane. SOD(B)ST2SA2's extract demonstrated minimum inhibitory concentration and minimum bactericidal concentration, ranging from 0.78-25 mg/mL and 3.13 to > 25 mg/mL, respectively. Diethyl phthalate displayed the lowest bacterial protein-binding energies (kcal/mol): -7.2, dihydrofolate reductase; -6.0, DNA gyrase B; and -5.8, D-alanine:D-alanine ligase. Thus, marine N. dassonvillei SOD(B)ST2SA2 is a potentially good source of antibacterial compounds that can be used to control STEC and Listeria monocytogenes.

4.
Heliyon ; 9(6): e16723, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484259

ABSTRACT

The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.

5.
Biochem Res Int ; 2023: 1777039, 2023.
Article in English | MEDLINE | ID: mdl-37101940

ABSTRACT

In recent years, the potential of pathogenic bacteria to acquire resistance to a variety of antimicrobial drugs has developed significantly due to the indiscriminate exposure of a number of antibiotic compounds. The purpose of this study is to determine the antibacterial capabilities and activities of crude Pleurotus ostreatus extracts against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Neisseria gonorrhoeae (ATCC 49926), and nine multidrug-resistant clinical isolates of Neisseria gonorrhoeae. All of these isolates exhibited sensitivity to azithromycin and ceftriaxone, while the majority of antibiotic resistance was seen against penicillin G, sulphonamide, and ciprofloxacin. Fifty percent of the isolates exhibited absolute resistance to both sulphonamide and ciprofloxacin, whereas 40% of the isolates displayed absolute resistance to penicillin G. The antibacterial activity of P. ostreatus extracts examined in this investigation varied within the same species of microorganisms. Extract B and D, extracted in the presence of 20% wheat bran bagasse and 20% maize flour bagasse, respectively, had exceptional antibacterial activity against all target isolates examined. We observed the lowest concentration of antibacterial agent required to inhibit the target bacteria to be between 1 × 10-3 mg/ml and 1 × 10-6 mg/ml with an estimated probability of 0.30769, a lower 95% confidence interval (CI) of 0.126807, an upper 95% CI of 0.576307, an estimated probability of 0.15385, a lower 95% CI of 0.043258, and an upper 95% CI, respectively. The MBC of 1 × 10-3 mg/ml was seen to eliminate 31% of the target bacteria. This dose was the most inhibitive. The antibacterial activity of all the extracts examined in the current study exhibited some degree of efficacy against both clinical isolates and standard strains. However, the majority of clinically isolated bacteria exhibited greater resistance to the extracts.

6.
Cell Stress Chaperones ; 26(4): 685-693, 2021 07.
Article in English | MEDLINE | ID: mdl-34023985

ABSTRACT

Plasmodium falciparum is the most lethal malaria parasite. The present study investigates the interaction capabilities of select plant derivatives, iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA), against P. falciparum Hsp70-1 (PfHsp70-1) using in vitro approaches. PfHsp70-1 facilitates protein folding in the parasite and is deemed a prospective antimalarial drug target. Recombinant PfHsp70-1 protein was expressed in E. coli BL21 cells and homogeneously purified by affinity chromatography. The interaction between the compounds and PfHsp70-1 was evaluated using malate dehydrogenase (MDH), and luciferase aggregation assay, ATPase activity assay, and Fourier transform infrared (FTIR). PfHsp70-1 prevented the heat-induced aggregation of MDH and luciferase. However, the PfHsp70-1 chaperone role was inhibited by IMA or UAA, leading to both MDH and luciferase's thermal aggregation. The basal ATPase activity of PfHsp70-1 (0.121 nmol/min/mg) was closer to UAA (0.131 nmol/min/mg) (p = 0.0675) at 5 mM compound concentration, suggesting that UAA has no effect on PfHsp70-1 ATPase activity. However, ATPase activity inhibition was similar between IMA (0.068 nmol/min/mg) (p < 0.0001) and polymyxin B (0.083 nmol/min/mg) (p < 0.0001). The lesser the Pi values, the lesser ATP hydrolysis observed due to compound binding to the ATPase domain. FTIR spectra analysis of IMA and UAA resulted in PfHsp70-1 structural alteration for ß-sheets shifting the amide I band from 1637 cm-1 to 1639 cm-1, and for α-helix from 1650 cm-1 to 1652 cm-1, therefore depicting secondary structural changes with an increase in secondary structure percentage suggesting that these compounds interact with PfHsp70-1.


Subject(s)
HSP70 Heat-Shock Proteins/drug effects , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Plasmodium falciparum/metabolism , Triterpenes/pharmacology , Adenosine Triphosphatases/metabolism , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/pharmacology , Escherichia coli/metabolism , Plasmodium falciparum/drug effects , Prospective Studies , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Ursolic Acid
7.
Amino Acids ; 53(3): 359-380, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33586041

ABSTRACT

The antioxidant and anti-proinflammatory activities of L-leucine were investigated on oxidative testicular injury, ex vivo. In vitro analysis revealed L-leucine to be a potent scavenger of free radicals, while inhibiting acetylcholinesterase activity. Oxidative injury was induced in testicular tissues using FeSO4. Treatment with L-leucine led to depletion of oxidative-induced elevated levels of NO, MDA, and myeloperoxidase activity, with concomitant elevation of reduced glutathione and non-protein thiol levels, SOD and catalase activities. L-leucine caused a significant (p < 0.05) alteration of oxidative-elevated acetylcholinesterase and chymotrypsin activities, while concomitantly elevating the activities of ATPase, ENTPDase and 5'-nucleotidase. L-leucine conferred a protective effect against oxidative induced DNA damage. Molecular docking revealed molecular interactions with COX-2, IL-1 beta and iNOS. Treatment with L-leucine led to restoration of oxidative depleted ascorbic acid-2-sulfate, with concomitant depletion of the oxidative induced metabolites: D-4-Hydroxy-2-oxoglutarate, L-cystine, adenosine triphosphate, maleylacetoacetic acid, cholesteryl ester, and 6-Hydroxy flavin adenine dinucleotide. Treatment with L-leucine reactivated glycolysis while concomitantly deactivating oxidative-induced citrate cycle and increasing the impact-fold of purine metabolism pathway. L-leucine was predicted not to be an inhibitor of CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, with a predicted LD50 value of 5000 mg/Kg and toxicity class of 5. Additionally, L-leucine showed little or no in vitro cytotoxicity in mammalian cells. These results suggest the therapeutic potentials of L-leucine on oxidative testicular injury, as evident by its ability to attenuate oxidative stress and proinflammation, while stalling cholinergic dysfunction and modulating nucleotide hyrolysis; as well as modulate oxidative dysregulated metabolites and their pathways.


Subject(s)
Cholinergic Agents/metabolism , Leucine/pharmacology , Metabolic Networks and Pathways/drug effects , Oxidative Stress/drug effects , Purinergic Agents/metabolism , Testis/injuries , Animals , Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Cell Line , Cell Survival/drug effects , Cholinergic Agents/chemistry , DNA Damage/drug effects , Ferrous Compounds/toxicity , Humans , Leucine/chemistry , Male , Molecular Docking Simulation , Rats , Testis/metabolism
8.
Drug Des Devel Ther ; 14: 3235-3249, 2020.
Article in English | MEDLINE | ID: mdl-32884235

ABSTRACT

It is essential to acknowledge the efforts made thus far to manage or eliminate various disease burden faced by humankind. However, the rising global trends of the so-called incurable diseases continue to put pressure on Pharma industries and other drug discovery platforms. In the past, drugs with more than one target were deemed as undesirable options with interest being on the one-drug-single target. Despite the successes of the single-target drugs, it is currently beyond doubt that these drugs have limited efficacy against complex diseases in which the pathogenesis is dependent on a set of biochemical events and several bioreceptors operating concomitantly. Different approaches have thus been proposed to come up with effective drugs to combat even the complex diseases. In the past, the focus was on producing drugs from screening plant compounds; today, we talk about combination therapy and multi-targeting drugs. The multi-target drugs have recently attracted much attention as promising tools to fight against most challenging diseases, and thus a new research focus area. This review will discuss the potential impact of multi-target drug approach on various complex diseases with focus on malaria, tuberculosis (TB), diabetes and neurodegenerative diseases as the main representatives of multifactorial diseases. We will also discuss alternative ideas to solve the current problems bearing in mind the fourth industrial revolution on drug discovery.


Subject(s)
Antimalarials/therapeutic use , Antitubercular Agents/therapeutic use , Hypoglycemic Agents/therapeutic use , Neuroprotective Agents/therapeutic use , Diabetes Mellitus/drug therapy , Humans , Malaria/drug therapy , Neurodegenerative Diseases/drug therapy , Tuberculosis/drug therapy
9.
Biomolecules ; 9(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835879

ABSTRACT

To date, Plasmodium falciparum is one of the most lethal strains of the malaria parasite. P. falciparum lacks the required enzymes to create its own purines via the de novo pathway, thereby making Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPT) a crucial enzyme in the malaria life cycle. Recently, studies have described iso-mukaadial acetate and ursolic acid acetate as promising antimalarials. However, the mode of action is still unknown, thus, the current study sought to investigate the selective inhibitory and binding actions of iso-mukaadial acetate and ursolic acid acetate against recombinant PfHGXPT using in-silico and experimental approaches. Recombinant PfHGXPT protein was expressed using E. coli BL21 cells and homogeneously purified by affinity chromatography. Experimentally, iso-mukaadial acetate and ursolic acid acetate, respectively, demonstrated direct inhibitory activity towards PfHGXPT in a dose-dependent manner. The binding affinity of iso-mukaadial acetate and ursolic acid acetate on the PfHGXPT dissociation constant (KD), where it was found that 0.0833 µM and 2.8396 µM, respectively, are indicative of strong binding. The mode of action for the observed antimalarial activity was further established by a molecular docking study. The molecular docking and dynamics simulations show specific interactions and high affinity within the binding pocket of Plasmodium falciparum and human hypoxanthine-guanine phosphoribosyl transferases. The predicted in silico absorption, distribution, metabolism and excretion/toxicity (ADME/T) properties predicted that the iso-mukaadial acetate ligand may follow the criteria for orally active drugs. The theoretical calculation derived from ADME, molecular docking and dynamics provide in-depth information into the structural basis, specific bonding and non-bonding interactions governing the inhibition of malarial. Taken together, these findings provide a basis for the recommendation of iso-mukaadial acetate and ursolic acid acetate as high-affinity ligands and drug candidates against PfHGXPT.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Pentosyltransferases/antagonists & inhibitors , Plasmodium falciparum/drug effects , Acetates/chemistry , Acetates/pharmacology , Antimalarials/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Ligands , Models, Molecular , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/pharmacology , Ursolic Acid
10.
Biomolecules ; 9(10)2019 09 22.
Article in English | MEDLINE | ID: mdl-31546691

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic disorder which has become a major risk to the health of humankind, as its global prevalence is increasing rapidly. Currently available treatment options in modern medicine have several adverse effects. Thus, there is an urgent need to develop alternative cost-effective, safe, and active treatments for diabetes. In this regard, medicinal plants provide the best option for new therapeutic remedies desired to be effective and safe. Recently, we focused our attention on drimane sesquiterpenes as potential sources of antimalarial and antidiabetic agents. In this study, iso-mukaadial acetate (Iso) (1), a drimane-type sesquiterpenoid from the ground stem bark of Warburgia salutaris, was investigated for glucose uptake enhancement in the L6 rat myoblast cell line. In vitro assays with L6 skeletal muscle cells were used to test for cytotoxicity, glucose utilisation, and western blot analysis. Additionally, the inhibition of carbohydrate digestive enzymes and 1,1-diphenyl-2- picrylhydrazyl (DPPH) scavenging activity were analysed in vitro. The cell viability effect of iso-mukaadial acetate was the highest at 3 µg/mL with a percentage of 98.4. Iso-mukaadial acetate also significantly and dose-dependently increased glucose utilisation up to 215.18% (12.5 µg/mL). The increase in glucose utilisation was accompanied by enhanced 5' adenosine monophosphate-activated protein kinase (AMPK)and protein kinase B (AKT) in dose-dependent manner. Furthermore, iso-mukaadial acetate dose-dependently inhibited the enzymes α-amylase and α-glucosidase. Scavenging activity against DPPH was displayed by iso-mukaadial acetate in a concentration-dependent manner. The findings indicate the apparent therapeutic efficacy of iso-mukaadial acetate isolated from W. salutaris as a potential new antidiabetic agent.


Subject(s)
Glucose/metabolism , Magnoliopsida/chemistry , Myoblasts, Skeletal/cytology , Polycyclic Sesquiterpenes/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , Plant Bark/chemistry , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats
11.
Cell Stress Chaperones ; 22(5): 707-715, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28455613

ABSTRACT

Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in cellular proteostasis. Hsp70s are also implicated in the survival and pathogenicity of malaria parasites. The main agent of malaria, Plasmodium falciparum, expresses six Hsp70s. Of these, two (PfHsp70-1 and PfHsp70-z) localize to the parasite cytosol. Previously conducted gene knockout studies suggested that PfHsp70-z is essential, and it has been demonstrated that small-molecule inhibitors targeting PfHsp70-1 cause parasite death. For this reason, both PfHsp70-1 and PfHsp70-z are potential antimalarial targets. Two cyclic lipopeptides, colistin and polymyxin B (PMB), have been shown to bind another heat shock protein, Hsp90, inhibiting its chaperone function. In the current study, we investigated the effect of PMB on the structure-function features of PfHsp70-1 and PfHsp70-z. Using surface plasmon resonance analysis, we observed that PMB directly interacts with both PfHsp70-1 and PfHsp70-z. In addition, using circular dichroism spectrometric analysis combined with tryptophan fluorescence measurements, we observed that PMB modulated the secondary and tertiary structures of Hsp70. Furthermore, PMB inhibited the basal ATPase activity and chaperone function of the two Hsp70s. Our findings suggest that PMB associates with Hsp70 to inhibit its function. In light of the central role of Hsp70 in cellular proteostasis and its essential role in the development of malaria parasites in particular, our findings expand the library of small-molecule inhibitors that target this medically important class of molecular chaperones.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Plasmodium falciparum/metabolism , Polymyxin B/pharmacology , Protozoan Proteins/metabolism , Circular Dichroism , HSP70 Heat-Shock Proteins/genetics , Plasmodium falciparum/drug effects , Polymyxin B/chemistry , Polymyxin B/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...